Sets and Classes as Many
نویسنده
چکیده
If on the other hand we insist—as we shall here—that classes are to be taken in the sense of multitudes, pluralities, or classes as many, then no class can be an individual and so, in particular, the concept of set will need to be redefined. Here by “class as many” we have in mind what Erik Stenius refers to in [5] as set of, which he defines as follows: If we start from a Universe of Discourse given in advance, then we may define a set-of things as being many things in this UoD or just one thing or even no things, if we want to introduce this way of speaking.
منابع مشابه
MMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملSkew-slash distribution and its application in topics regression
In many issues of statistical modeling, the common assumption is that observations are normally distributed. In many real data applications, however, the true distribution is deviated from the normal. Thus, the main concern of most recent studies on analyzing data is to construct and the use of alternative distributions. In this regard, new classes of distributions such as slash and skew-sla...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Philosophical Logic
دوره 29 شماره
صفحات -
تاریخ انتشار 2000